This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
posi.b |
|
|
|
posi.l |
|
|
Assertion |
postr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posi.b |
|
| 2 |
|
posi.l |
|
| 3 |
1 2
|
posi |
|
| 4 |
3
|
simp3d |
|