This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.3 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 2 | 1 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ ( 𝜑 ∧ 𝜒 ) ) ) |
| 3 | 2 | pm5.74i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) ) |