This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.43 of WhiteheadRussell p. 119. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 26-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.43 | ⊢ ( 𝜑 ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.24 | ⊢ ¬ ( 𝜓 ∧ ¬ 𝜓 ) | |
| 2 | 1 | biorfri | ⊢ ( 𝜑 ↔ ( 𝜑 ∨ ( 𝜓 ∧ ¬ 𝜓 ) ) ) |
| 3 | ordi | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝜑 ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) ) |