This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.42 of WhiteheadRussell p. 119. See also ifpid . (Contributed by Roy F. Longton, 21-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.42 | ⊢ ( 𝜑 ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedlema | ⊢ ( 𝜓 → ( 𝜑 ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) ) | |
| 2 | dedlemb | ⊢ ( ¬ 𝜓 → ( 𝜑 ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) ) | |
| 3 | 1 2 | pm2.61i | ⊢ ( 𝜑 ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |