This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.85 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.85 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) → ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orimdi | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) | |
| 2 | 1 | biimpri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) → ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ) |