This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm2.85

Description: Theorem *2.85 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion pm2.85 φ ψ φ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 orimdi φ ψ χ φ ψ φ χ
2 1 biimpri φ ψ φ χ φ ψ χ