This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.64 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.64 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ ¬ 𝜓 ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel2 | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) | |
| 2 | 1 | jao1i | ⊢ ( ( 𝜑 ∨ ¬ 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) |
| 3 | 2 | com12 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ ¬ 𝜓 ) → 𝜑 ) ) |