This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.192 | ⊢ ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr | ⊢ ( ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ) |
| 3 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
| 4 | 3 | equsalvw | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 ) |
| 5 | 2 4 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → 𝑦 = 𝐴 ) |
| 6 | eqeq2 | ⊢ ( 𝐴 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) | |
| 7 | 6 | eqcoms | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
| 8 | 7 | alrimiv | ⊢ ( 𝑦 = 𝐴 → ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
| 9 | 5 8 | impbii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ↔ 𝑦 = 𝐴 ) |
| 10 | 9 | anbi1i | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 12 | sbc5 | ⊢ ( [ 𝐴 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑦 ] 𝜑 ) |