This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.192 | |- ( E. y ( A. x ( x = A <-> x = y ) /\ ph ) <-> [. A / y ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr | |- ( ( x = A <-> x = y ) -> ( x = y -> x = A ) ) |
|
| 2 | 1 | alimi | |- ( A. x ( x = A <-> x = y ) -> A. x ( x = y -> x = A ) ) |
| 3 | eqeq1 | |- ( x = y -> ( x = A <-> y = A ) ) |
|
| 4 | 3 | equsalvw | |- ( A. x ( x = y -> x = A ) <-> y = A ) |
| 5 | 2 4 | sylib | |- ( A. x ( x = A <-> x = y ) -> y = A ) |
| 6 | eqeq2 | |- ( A = y -> ( x = A <-> x = y ) ) |
|
| 7 | 6 | eqcoms | |- ( y = A -> ( x = A <-> x = y ) ) |
| 8 | 7 | alrimiv | |- ( y = A -> A. x ( x = A <-> x = y ) ) |
| 9 | 5 8 | impbii | |- ( A. x ( x = A <-> x = y ) <-> y = A ) |
| 10 | 9 | anbi1i | |- ( ( A. x ( x = A <-> x = y ) /\ ph ) <-> ( y = A /\ ph ) ) |
| 11 | 10 | exbii | |- ( E. y ( A. x ( x = A <-> x = y ) /\ ph ) <-> E. y ( y = A /\ ph ) ) |
| 12 | sbc5 | |- ( [. A / y ]. ph <-> E. y ( y = A /\ ph ) ) |
|
| 13 | 11 12 | bitr4i | |- ( E. y ( A. x ( x = A <-> x = y ) /\ ph ) <-> [. A / y ]. ph ) |