This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1sclcl
Metamath Proof Explorer
Description: The value of the algebra scalar lifting function for (univariate)
polynomials applied to a scalar results in a constant polynomial.
(Contributed by AV , 27-Nov-2019)
Ref
Expression
Hypotheses
ply1scl.p
⊢ P = Poly 1 ⁡ R
ply1scl.a
⊢ A = algSc ⁡ P
coe1scl.k
⊢ K = Base R
ply1sclf.b
⊢ B = Base P
Assertion
ply1sclcl
⊢ R ∈ Ring ∧ S ∈ K → A ⁡ S ∈ B
Proof
Step
Hyp
Ref
Expression
1
ply1scl.p
⊢ P = Poly 1 ⁡ R
2
ply1scl.a
⊢ A = algSc ⁡ P
3
coe1scl.k
⊢ K = Base R
4
ply1sclf.b
⊢ B = Base P
5
1 2 3 4
ply1sclf
⊢ R ∈ Ring → A : K ⟶ B
6
5
ffvelcdmda
⊢ R ∈ Ring ∧ S ∈ K → A ⁡ S ∈ B