This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhfo | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 2 | foeq1 | ⊢ ( ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) → ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ↔ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) : ℋ –onto→ 𝐻 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ↔ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) : ℋ –onto→ 𝐻 ) ) |
| 4 | foeq3 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) : ℋ –onto→ 𝐻 ↔ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) : ℋ –onto→ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 5 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 6 | 5 | elimel | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
| 7 | 6 | pjfoi | ⊢ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) : ℋ –onto→ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) |
| 8 | 3 4 7 | dedth2v | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ) |