This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euler phi function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in ApostolNT p. 28. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phimul | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ( ϕ ‘ 𝑀 ) · ( ϕ ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 0 ..^ ( 𝑀 · 𝑁 ) ) = ( 0 ..^ ( 𝑀 · 𝑁 ) ) | |
| 2 | eqid | ⊢ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) = ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) | |
| 3 | eqid | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) | |
| 4 | id | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) | |
| 5 | eqid | ⊢ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } = { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } | |
| 6 | eqid | ⊢ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } | |
| 7 | eqid | ⊢ { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } = { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } | |
| 8 | 1 2 3 4 5 6 7 | phimullem | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ( ϕ ‘ 𝑀 ) · ( ϕ ‘ 𝑁 ) ) ) |