This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The concatenation of the prefix of a word and the rest of the word yields the word itself. (Contributed by AV, 21-Oct-2018) (Revised by AV, 9-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxcctswrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 5 | ccatpfx | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) ) |
| 7 | pfxid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = 𝑊 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 9 | 6 8 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑀 ) ++ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = 𝑊 ) |