This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of osumi . (Contributed by NM, 5-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | osum.1 | ⊢ 𝐴 ∈ Cℋ | |
| osum.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | osumcori | ⊢ ( ( 𝐴 ∩ 𝐵 ) +ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | osum.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | osum.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 | 2 4 | chub2i | ⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 6 | 3 5 | sstri | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 7 | 1 2 | chdmm3i | ⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 8 | 6 7 | sseqtrri | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 10 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 11 | 1 10 | chincli | ⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 12 | 9 11 | osumi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) +ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 13 | 8 12 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝐵 ) +ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |