This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opifismgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| opifismgm.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ if ( 𝜓 , 𝐶 , 𝐷 ) ) | ||
| opifismgm.n | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| opifismgm.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) | ||
| opifismgm.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐵 ) | ||
| Assertion | opifismgm | ⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opifismgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | opifismgm.p | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ if ( 𝜓 , 𝐶 , 𝐷 ) ) | |
| 3 | opifismgm.n | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 4 | opifismgm.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) | |
| 5 | opifismgm.d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐵 ) | |
| 6 | 4 5 | ifcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
| 7 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 11 | 2 | ovmpoelrn | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 if ( 𝜓 , 𝐶 , 𝐷 ) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 14 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 16 | 1 15 | ismgmn0 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 18 | 14 17 | sylbi | ⊢ ( 𝐵 ≠ ∅ → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 20 | 13 19 | mpbird | ⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |