This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opifismgm.b | |- B = ( Base ` M ) |
|
| opifismgm.p | |- ( +g ` M ) = ( x e. B , y e. B |-> if ( ps , C , D ) ) |
||
| opifismgm.n | |- ( ph -> B =/= (/) ) |
||
| opifismgm.c | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. B ) |
||
| opifismgm.d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. B ) |
||
| Assertion | opifismgm | |- ( ph -> M e. Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opifismgm.b | |- B = ( Base ` M ) |
|
| 2 | opifismgm.p | |- ( +g ` M ) = ( x e. B , y e. B |-> if ( ps , C , D ) ) |
|
| 3 | opifismgm.n | |- ( ph -> B =/= (/) ) |
|
| 4 | opifismgm.c | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. B ) |
|
| 5 | opifismgm.d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. B ) |
|
| 6 | 4 5 | ifcld | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> if ( ps , C , D ) e. B ) |
| 7 | 6 | ralrimivva | |- ( ph -> A. x e. B A. y e. B if ( ps , C , D ) e. B ) |
| 8 | 7 | adantr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> A. x e. B A. y e. B if ( ps , C , D ) e. B ) |
| 9 | simprl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
|
| 10 | simprr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
|
| 11 | 2 | ovmpoelrn | |- ( ( A. x e. B A. y e. B if ( ps , C , D ) e. B /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) |
| 13 | 12 | ralrimivva | |- ( ph -> A. a e. B A. b e. B ( a ( +g ` M ) b ) e. B ) |
| 14 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 15 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 16 | 1 15 | ismgmn0 | |- ( x e. B -> ( M e. Mgm <-> A. a e. B A. b e. B ( a ( +g ` M ) b ) e. B ) ) |
| 17 | 16 | exlimiv | |- ( E. x x e. B -> ( M e. Mgm <-> A. a e. B A. b e. B ( a ( +g ` M ) b ) e. B ) ) |
| 18 | 14 17 | sylbi | |- ( B =/= (/) -> ( M e. Mgm <-> A. a e. B A. b e. B ( a ( +g ` M ) b ) e. B ) ) |
| 19 | 3 18 | syl | |- ( ph -> ( M e. Mgm <-> A. a e. B A. b e. B ( a ( +g ` M ) b ) e. B ) ) |
| 20 | 13 19 | mpbird | |- ( ph -> M e. Mgm ) |