This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeqsn.1 | ⊢ 𝐴 ∈ V | |
| opeqsn.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | opeqsn | ⊢ ( 〈 𝐴 , 𝐵 〉 = { 𝐶 } ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqsn.1 | ⊢ 𝐴 ∈ V | |
| 2 | opeqsn.2 | ⊢ 𝐵 ∈ V | |
| 3 | opeqsng | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 = { 𝐶 } ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = { 𝐴 } ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 = { 𝐶 } ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = { 𝐴 } ) ) |