This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the second member of an ordered pair. (See op1sta to extract the first member, op2ndb for an alternate version, and op2nd for the preferred version.) (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnvsn.1 | ⊢ 𝐴 ∈ V | |
| cnvsn.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | op2nda | ⊢ ∪ ran { 〈 𝐴 , 𝐵 〉 } = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 | rnsnop | ⊢ ran { 〈 𝐴 , 𝐵 〉 } = { 𝐵 } |
| 4 | 3 | unieqi | ⊢ ∪ ran { 〈 𝐴 , 𝐵 〉 } = ∪ { 𝐵 } |
| 5 | 2 | unisn | ⊢ ∪ { 𝐵 } = 𝐵 |
| 6 | 4 5 | eqtri | ⊢ ∪ ran { 〈 𝐴 , 𝐵 〉 } = 𝐵 |