This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the first member of an ordered pair. (See op2nda to extract the second member, op1stb for an alternate version, and op1st for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnvsn.1 | ⊢ 𝐴 ∈ V | |
| cnvsn.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | op1sta | ⊢ ∪ dom { 〈 𝐴 , 𝐵 〉 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | ⊢ 𝐵 ∈ V | |
| 3 | 2 | dmsnop | ⊢ dom { 〈 𝐴 , 𝐵 〉 } = { 𝐴 } |
| 4 | 3 | unieqi | ⊢ ∪ dom { 〈 𝐴 , 𝐵 〉 } = ∪ { 𝐴 } |
| 5 | 1 | unisn | ⊢ ∪ { 𝐴 } = 𝐴 |
| 6 | 4 5 | eqtri | ⊢ ∪ dom { 〈 𝐴 , 𝐵 〉 } = 𝐴 |