This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | on.1 | ⊢ 𝐴 ∈ On | |
| Assertion | onssneli | ⊢ ( 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | ⊢ 𝐴 ∈ On | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵 ) ) | |
| 3 | 1 | oneli | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ On ) |
| 4 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 5 | ordirr | ⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵 ) |
| 7 | 2 6 | nsyli | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴 ) ) |
| 8 | 7 | pm2.01d | ⊢ ( 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) |