This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem isolat

Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion isolat ( 𝐾 ∈ OL ↔ ( 𝐾 ∈ Lat ∧ 𝐾 ∈ OP ) )

Proof

Step Hyp Ref Expression
1 df-ol OL = ( Lat ∩ OP )
2 1 elin2 ( 𝐾 ∈ OL ↔ ( 𝐾 ∈ Lat ∧ 𝐾 ∈ OP ) )