This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element raised to the power of its order is 1 . (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odzid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odzcllem | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) ) | |
| 2 | 1 | simprd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) |