This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of filssufilg : a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numufl | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filssufilg | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) |
| 3 | 2 | ralrimiva | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) |
| 4 | pwexr | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V ) | |
| 5 | pwexb | ⊢ ( 𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V ) |
| 7 | isufl | ⊢ ( 𝑋 ∈ V → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) ) |
| 9 | 3 8 | mpbird | ⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL ) |