This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 | |
| nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 | ||
| nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 | ||
| nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 | ||
| nummul1c.5 | ⊢ 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | ||
| nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 | ||
| nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 | ||
| nummul1c.8 | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐸 ) = 𝐶 | ||
| nummul1c.9 | ⊢ ( 𝐵 · 𝑃 ) = ( ( 𝑇 · 𝐸 ) + 𝐷 ) | ||
| Assertion | nummul1c | ⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 | |
| 2 | nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 | |
| 3 | nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 | |
| 4 | nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 | |
| 5 | nummul1c.5 | ⊢ 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | |
| 6 | nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 | |
| 7 | nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 | |
| 8 | nummul1c.8 | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐸 ) = 𝐶 | |
| 9 | nummul1c.9 | ⊢ ( 𝐵 · 𝑃 ) = ( ( 𝑇 · 𝐸 ) + 𝐷 ) | |
| 10 | 1 3 4 | numcl | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
| 11 | 5 10 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
| 12 | 11 2 | num0u | ⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑁 · 𝑃 ) + 0 ) |
| 13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 14 | 1 13 | num0h | ⊢ 0 = ( ( 𝑇 · 0 ) + 0 ) |
| 15 | 7 | nn0cni | ⊢ 𝐸 ∈ ℂ |
| 16 | 15 | addlidi | ⊢ ( 0 + 𝐸 ) = 𝐸 |
| 17 | 16 | oveq2i | ⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐸 ) ) = ( ( 𝐴 · 𝑃 ) + 𝐸 ) |
| 18 | 17 8 | eqtri | ⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐸 ) ) = 𝐶 |
| 19 | 4 2 | num0u | ⊢ ( 𝐵 · 𝑃 ) = ( ( 𝐵 · 𝑃 ) + 0 ) |
| 20 | 19 9 | eqtr3i | ⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = ( ( 𝑇 · 𝐸 ) + 𝐷 ) |
| 21 | 1 3 4 13 13 5 14 2 6 7 18 20 | nummac | ⊢ ( ( 𝑁 · 𝑃 ) + 0 ) = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |
| 22 | 12 21 | eqtri | ⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |