This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numlt.1 | ⊢ 𝑇 ∈ ℕ | |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 | ||
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| numltc.3 | ⊢ 𝐶 ∈ ℕ0 | ||
| numltc.4 | ⊢ 𝐷 ∈ ℕ0 | ||
| numltc.5 | ⊢ 𝐶 < 𝑇 | ||
| numltc.6 | ⊢ 𝐴 < 𝐵 | ||
| Assertion | numltc | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐵 ) + 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | ⊢ 𝑇 ∈ ℕ | |
| 2 | numlt.2 | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numlt.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | numltc.3 | ⊢ 𝐶 ∈ ℕ0 | |
| 5 | numltc.4 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | numltc.5 | ⊢ 𝐶 < 𝑇 | |
| 7 | numltc.6 | ⊢ 𝐴 < 𝐵 | |
| 8 | 1 2 4 1 6 | numlt | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
| 9 | 1 | nnrei | ⊢ 𝑇 ∈ ℝ |
| 10 | 9 | recni | ⊢ 𝑇 ∈ ℂ |
| 11 | 2 | nn0rei | ⊢ 𝐴 ∈ ℝ |
| 12 | 11 | recni | ⊢ 𝐴 ∈ ℂ |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | 10 12 13 | adddii | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) |
| 15 | 10 | mulridi | ⊢ ( 𝑇 · 1 ) = 𝑇 |
| 16 | 15 | oveq2i | ⊢ ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
| 17 | 14 16 | eqtri | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
| 18 | 8 17 | breqtrri | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · ( 𝐴 + 1 ) ) |
| 19 | nn0ltp1le | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) ) | |
| 20 | 2 3 19 | mp2an | ⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) |
| 21 | 7 20 | mpbi | ⊢ ( 𝐴 + 1 ) ≤ 𝐵 |
| 22 | 1 | nngt0i | ⊢ 0 < 𝑇 |
| 23 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 24 | 11 23 | ax-mp | ⊢ ( 𝐴 + 1 ) ∈ ℝ |
| 25 | 3 | nn0rei | ⊢ 𝐵 ∈ ℝ |
| 26 | 24 25 9 | lemul2i | ⊢ ( 0 < 𝑇 → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) ) |
| 27 | 22 26 | ax-mp | ⊢ ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) |
| 28 | 21 27 | mpbi | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) |
| 29 | 9 11 | remulcli | ⊢ ( 𝑇 · 𝐴 ) ∈ ℝ |
| 30 | 4 | nn0rei | ⊢ 𝐶 ∈ ℝ |
| 31 | 29 30 | readdcli | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) ∈ ℝ |
| 32 | 9 24 | remulcli | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) ∈ ℝ |
| 33 | 9 25 | remulcli | ⊢ ( 𝑇 · 𝐵 ) ∈ ℝ |
| 34 | 31 32 33 | ltletri | ⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · ( 𝐴 + 1 ) ) ∧ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) → ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) ) |
| 35 | 18 28 34 | mp2an | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) |
| 36 | 33 5 | nn0addge1i | ⊢ ( 𝑇 · 𝐵 ) ≤ ( ( 𝑇 · 𝐵 ) + 𝐷 ) |
| 37 | 5 | nn0rei | ⊢ 𝐷 ∈ ℝ |
| 38 | 33 37 | readdcli | ⊢ ( ( 𝑇 · 𝐵 ) + 𝐷 ) ∈ ℝ |
| 39 | 31 33 38 | ltletri | ⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) ∧ ( 𝑇 · 𝐵 ) ≤ ( ( 𝑇 · 𝐵 ) + 𝐷 ) ) → ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐵 ) + 𝐷 ) ) |
| 40 | 35 36 39 | mp2an | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐵 ) + 𝐷 ) |