This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numlt.1 | |- T e. NN |
|
| numlt.2 | |- A e. NN0 |
||
| numlt.3 | |- B e. NN0 |
||
| numltc.3 | |- C e. NN0 |
||
| numltc.4 | |- D e. NN0 |
||
| numltc.5 | |- C < T |
||
| numltc.6 | |- A < B |
||
| Assertion | numltc | |- ( ( T x. A ) + C ) < ( ( T x. B ) + D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | |- T e. NN |
|
| 2 | numlt.2 | |- A e. NN0 |
|
| 3 | numlt.3 | |- B e. NN0 |
|
| 4 | numltc.3 | |- C e. NN0 |
|
| 5 | numltc.4 | |- D e. NN0 |
|
| 6 | numltc.5 | |- C < T |
|
| 7 | numltc.6 | |- A < B |
|
| 8 | 1 2 4 1 6 | numlt | |- ( ( T x. A ) + C ) < ( ( T x. A ) + T ) |
| 9 | 1 | nnrei | |- T e. RR |
| 10 | 9 | recni | |- T e. CC |
| 11 | 2 | nn0rei | |- A e. RR |
| 12 | 11 | recni | |- A e. CC |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | 10 12 13 | adddii | |- ( T x. ( A + 1 ) ) = ( ( T x. A ) + ( T x. 1 ) ) |
| 15 | 10 | mulridi | |- ( T x. 1 ) = T |
| 16 | 15 | oveq2i | |- ( ( T x. A ) + ( T x. 1 ) ) = ( ( T x. A ) + T ) |
| 17 | 14 16 | eqtri | |- ( T x. ( A + 1 ) ) = ( ( T x. A ) + T ) |
| 18 | 8 17 | breqtrri | |- ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) |
| 19 | nn0ltp1le | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A < B <-> ( A + 1 ) <_ B ) ) |
|
| 20 | 2 3 19 | mp2an | |- ( A < B <-> ( A + 1 ) <_ B ) |
| 21 | 7 20 | mpbi | |- ( A + 1 ) <_ B |
| 22 | 1 | nngt0i | |- 0 < T |
| 23 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 24 | 11 23 | ax-mp | |- ( A + 1 ) e. RR |
| 25 | 3 | nn0rei | |- B e. RR |
| 26 | 24 25 9 | lemul2i | |- ( 0 < T -> ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) ) |
| 27 | 22 26 | ax-mp | |- ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) |
| 28 | 21 27 | mpbi | |- ( T x. ( A + 1 ) ) <_ ( T x. B ) |
| 29 | 9 11 | remulcli | |- ( T x. A ) e. RR |
| 30 | 4 | nn0rei | |- C e. RR |
| 31 | 29 30 | readdcli | |- ( ( T x. A ) + C ) e. RR |
| 32 | 9 24 | remulcli | |- ( T x. ( A + 1 ) ) e. RR |
| 33 | 9 25 | remulcli | |- ( T x. B ) e. RR |
| 34 | 31 32 33 | ltletri | |- ( ( ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) /\ ( T x. ( A + 1 ) ) <_ ( T x. B ) ) -> ( ( T x. A ) + C ) < ( T x. B ) ) |
| 35 | 18 28 34 | mp2an | |- ( ( T x. A ) + C ) < ( T x. B ) |
| 36 | 33 5 | nn0addge1i | |- ( T x. B ) <_ ( ( T x. B ) + D ) |
| 37 | 5 | nn0rei | |- D e. RR |
| 38 | 33 37 | readdcli | |- ( ( T x. B ) + D ) e. RR |
| 39 | 31 33 38 | ltletri | |- ( ( ( ( T x. A ) + C ) < ( T x. B ) /\ ( T x. B ) <_ ( ( T x. B ) + D ) ) -> ( ( T x. A ) + C ) < ( ( T x. B ) + D ) ) |
| 40 | 35 36 39 | mp2an | |- ( ( T x. A ) + C ) < ( ( T x. B ) + D ) |