This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nllyss | ⊢ ( 𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) | |
| 2 | 1 | reximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) |
| 3 | 2 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) |
| 4 | 3 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) |
| 5 | 4 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 6 | isnlly | ⊢ ( 𝑗 ∈ 𝑛-Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) | |
| 7 | isnlly | ⊢ ( 𝑗 ∈ 𝑛-Locally 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ 𝑛-Locally 𝐵 ) ) |
| 9 | 8 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵 ) |