This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nfia1

Description: Lemma 23 of Monk2 p. 114. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Assertion nfia1 x x φ x ψ

Proof

Step Hyp Ref Expression
1 nfa1 x x φ
2 nfa1 x x ψ
3 1 2 nfim x x φ x ψ