This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of nfeu1 . This illustrates the systematic way of proving nonfreeness in a defined expression: consider the definiens as a tree whose nodes are its subformulas, and prove by tree-induction nonfreeness of each node, starting from the leaves (generally using nfv or nf* theorems for previously defined expressions) and up to the root. Here, the definiens is a conjunction of two previously defined expressions, which automatically yields the present proof. (Contributed by BJ, 2-Oct-2022) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfeu1ALT | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ) | |
| 2 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 𝜑 | |
| 3 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) |
| 5 | 1 4 | nfxfr | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 |