This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfcsb . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 21-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfcsbd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfcsbd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfcsbd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| Assertion | nfcsbd | ⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑦 ⦌ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsbd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfcsbd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfcsbd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 4 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 } | |
| 5 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 6 | 3 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ 𝐵 ) |
| 7 | 1 2 6 | nfsbcd | ⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 ) |
| 8 | 5 7 | nfabd | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 } ) |
| 9 | 4 8 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑦 ⦌ 𝐵 ) |