This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfsbc . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfsbcdw when possible. (Contributed by NM, 23-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsbcd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfsbcd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfsbcd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfsbcd | ⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbcd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfsbcd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfsbcd.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 4 | df-sbc | ⊢ ( [ 𝐴 / 𝑦 ] 𝜓 ↔ 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) | |
| 5 | 1 3 | nfabd | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |
| 6 | 2 5 | nfeld | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) |
| 7 | 4 6 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 ) |