This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for nonfreeness. See nfbidf for a version without disjoint variable condition but requiring more axioms. (Contributed by Mario Carneiro, 4-Oct-2016) Remove dependency on ax-6 , ax-7 , ax-12 by adapting proof of nfbidf . (Revised by BJ, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | albidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | nfbidv | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝜓 ↔ Ⅎ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) ) |
| 3 | 1 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |
| 4 | 2 3 | imbi12d | ⊢ ( 𝜑 → ( ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜒 → ∀ 𝑥 𝜒 ) ) ) |
| 5 | df-nf | ⊢ ( Ⅎ 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 6 | df-nf | ⊢ ( Ⅎ 𝑥 𝜒 ↔ ( ∃ 𝑥 𝜒 → ∀ 𝑥 𝜒 ) ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝜓 ↔ Ⅎ 𝑥 𝜒 ) ) |