This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nexdh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| nexdh.2 | ⊢ ( 𝜑 → ¬ 𝜓 ) | ||
| Assertion | nexdh | ⊢ ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nexdh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | nexdh.2 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
| 3 | 1 2 | alrimih | ⊢ ( 𝜑 → ∀ 𝑥 ¬ 𝜓 ) |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) |