This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nel2nelin | ⊢ ( ¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) → 𝐴 ∈ 𝐶 ) | |
| 2 | 1 | con3i | ⊢ ( ¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ) |