This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of neighbors of a vertex is the number of edges at the vertex in a simple graph. (Contributed by AV, 27-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbedgusgr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | ovex | ⊢ ( 𝐺 NeighbVtx 𝑈 ) ∈ V | |
| 4 | 1 2 | nbusgrf1o | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) |
| 5 | hasheqf1oi | ⊢ ( ( 𝐺 NeighbVtx 𝑈 ) ∈ V → ( ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) ) | |
| 6 | 3 4 5 | mpsyl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |