This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof shortened by Wolf Lammen, 27-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) | |
| 2 | df-or | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) | |
| 3 | df-nan | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
| 4 | 3 | bicomi | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ⊼ 𝜓 ) ) |
| 5 | nannot | ⊢ ( ¬ 𝜑 ↔ ( 𝜑 ⊼ 𝜑 ) ) | |
| 6 | nannot | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 ⊼ 𝜓 ) ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) |
| 8 | 4 7 | imbi12i | ⊢ ( ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
| 9 | 1 2 8 | 3bitri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
| 10 | nannan | ⊢ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) | |
| 11 | 9 10 | bitr4i | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) ) |