This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof shortened by Wolf Lammen, 27-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanbi | |- ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
|
| 2 | df-or | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) ) |
|
| 3 | df-nan | |- ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) |
|
| 4 | 3 | bicomi | |- ( -. ( ph /\ ps ) <-> ( ph -/\ ps ) ) |
| 5 | nannot | |- ( -. ph <-> ( ph -/\ ph ) ) |
|
| 6 | nannot | |- ( -. ps <-> ( ps -/\ ps ) ) |
|
| 7 | 5 6 | anbi12i | |- ( ( -. ph /\ -. ps ) <-> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
| 8 | 4 7 | imbi12i | |- ( ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
| 9 | 1 2 8 | 3bitri | |- ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
| 10 | nannan | |- ( ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) |
|
| 11 | 9 10 | bitr4i | |- ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) ) |