This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | naim2 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 ⊼ 𝜓 ) → ( 𝜒 ⊼ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) | |
| 2 | 1 | orim2d | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( ¬ 𝜒 ∨ ¬ 𝜓 ) → ( ¬ 𝜒 ∨ ¬ 𝜑 ) ) ) |
| 3 | pm3.13 | ⊢ ( ¬ ( 𝜒 ∧ 𝜓 ) → ( ¬ 𝜒 ∨ ¬ 𝜓 ) ) | |
| 4 | pm3.14 | ⊢ ( ( ¬ 𝜒 ∨ ¬ 𝜑 ) → ¬ ( 𝜒 ∧ 𝜑 ) ) | |
| 5 | 3 4 | imim12i | ⊢ ( ( ( ¬ 𝜒 ∨ ¬ 𝜓 ) → ( ¬ 𝜒 ∨ ¬ 𝜑 ) ) → ( ¬ ( 𝜒 ∧ 𝜓 ) → ¬ ( 𝜒 ∧ 𝜑 ) ) ) |
| 6 | df-nan | ⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ¬ ( 𝜒 ∧ 𝜓 ) ) | |
| 7 | df-nan | ⊢ ( ( 𝜒 ⊼ 𝜑 ) ↔ ¬ ( 𝜒 ∧ 𝜑 ) ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( ( ( ¬ 𝜒 ∨ ¬ 𝜓 ) → ( ¬ 𝜒 ∨ ¬ 𝜑 ) ) → ( ( 𝜒 ⊼ 𝜓 ) → ( 𝜒 ⊼ 𝜑 ) ) ) |
| 9 | 2 8 | syl | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 ⊼ 𝜓 ) → ( 𝜒 ⊼ 𝜑 ) ) ) |