This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | naim2 | |- ( ( ph -> ps ) -> ( ( ch -/\ ps ) -> ( ch -/\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 | |- ( ( ph -> ps ) -> ( -. ps -> -. ph ) ) |
|
| 2 | 1 | orim2d | |- ( ( ph -> ps ) -> ( ( -. ch \/ -. ps ) -> ( -. ch \/ -. ph ) ) ) |
| 3 | pm3.13 | |- ( -. ( ch /\ ps ) -> ( -. ch \/ -. ps ) ) |
|
| 4 | pm3.14 | |- ( ( -. ch \/ -. ph ) -> -. ( ch /\ ph ) ) |
|
| 5 | 3 4 | imim12i | |- ( ( ( -. ch \/ -. ps ) -> ( -. ch \/ -. ph ) ) -> ( -. ( ch /\ ps ) -> -. ( ch /\ ph ) ) ) |
| 6 | df-nan | |- ( ( ch -/\ ps ) <-> -. ( ch /\ ps ) ) |
|
| 7 | df-nan | |- ( ( ch -/\ ph ) <-> -. ( ch /\ ph ) ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( ( ( -. ch \/ -. ps ) -> ( -. ch \/ -. ph ) ) -> ( ( ch -/\ ps ) -> ( ch -/\ ph ) ) ) |
| 9 | 2 8 | syl | |- ( ( ph -> ps ) -> ( ( ch -/\ ps ) -> ( ch -/\ ph ) ) ) |