This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpsyl4anc.1 | ⊢ 𝜑 | |
| mpsyl4anc.2 | ⊢ 𝜓 | ||
| mpsyl4anc.3 | ⊢ 𝜒 | ||
| mpsyl4anc.4 | ⊢ ( 𝜃 → 𝜏 ) | ||
| mpsyl4anc.5 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | mpsyl4anc | ⊢ ( 𝜃 → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl4anc.1 | ⊢ 𝜑 | |
| 2 | mpsyl4anc.2 | ⊢ 𝜓 | |
| 3 | mpsyl4anc.3 | ⊢ 𝜒 | |
| 4 | mpsyl4anc.4 | ⊢ ( 𝜃 → 𝜏 ) | |
| 5 | mpsyl4anc.5 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜂 ) | |
| 6 | 1 | a1i | ⊢ ( 𝜃 → 𝜑 ) |
| 7 | 2 | a1i | ⊢ ( 𝜃 → 𝜓 ) |
| 8 | 3 | a1i | ⊢ ( 𝜃 → 𝜒 ) |
| 9 | 6 7 8 4 5 | syl1111anc | ⊢ ( 𝜃 → 𝜂 ) |