This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.87 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005) (Proof shortened by Eric Schmidt, 26-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.87 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
| 2 | bi2.04 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) | |
| 3 | 1 2 | pm3.2i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) |
| 4 | impexp | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) | |
| 5 | 4 | bicomi | ⊢ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) |
| 6 | 3 5 | pm3.2i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) ) |