This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 7-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetf.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetf.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetf.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | mdetcl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetf.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetf.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetf.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | mdetf | ⊢ ( 𝑅 ∈ CRing → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) ∈ 𝐾 ) |