This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegval.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| mdegval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mdegval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mdegval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdegval.a | ⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } | ||
| mdegval.h | ⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) | ||
| Assertion | mdegfval | ⊢ 𝐷 = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegval.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| 2 | mdegval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mdegval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mdegval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdegval.a | ⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } | |
| 6 | mdegval.h | ⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) | |
| 7 | oveq12 | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = ( 𝐼 mPoly 𝑅 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = 𝑃 ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = ( Base ‘ 𝑃 ) ) |
| 10 | 9 3 | eqtr4di | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = 𝐵 ) |
| 11 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 12 | 11 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 13 | 12 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑓 supp ( 0g ‘ 𝑟 ) ) = ( 𝑓 supp 0 ) ) |
| 14 | 13 | mpteq1d | ⊢ ( 𝑟 = 𝑅 → ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) = ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) ) |
| 15 | 14 | rneqd | ⊢ ( 𝑟 = 𝑅 → ran ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) = ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) ) |
| 16 | 15 | supeq1d | ⊢ ( 𝑟 = 𝑅 → sup ( ran ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) = sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → sup ( ran ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) = sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) |
| 18 | 10 17 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) ) |
| 19 | df-mdeg | ⊢ mDeg = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) ) | |
| 20 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 21 | 20 | mptex | ⊢ ( 𝑓 ∈ 𝐵 ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) ∈ V |
| 22 | 18 19 21 | ovmpoa | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mDeg 𝑅 ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) ) |
| 23 | 6 | reseq1i | ⊢ ( 𝐻 ↾ ( 𝑓 supp 0 ) ) = ( ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) ↾ ( 𝑓 supp 0 ) ) |
| 24 | suppssdm | ⊢ ( 𝑓 supp 0 ) ⊆ dom 𝑓 | |
| 25 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 26 | simpr | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → 𝑓 ∈ 𝐵 ) | |
| 27 | 2 25 3 5 26 | mplelf | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → 𝑓 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 28 | 24 27 | fssdm | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 supp 0 ) ⊆ 𝐴 ) |
| 29 | 28 | resmptd | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → ( ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) ↾ ( 𝑓 supp 0 ) ) = ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) ) |
| 30 | 23 29 | eqtr2id | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) = ( 𝐻 ↾ ( 𝑓 supp 0 ) ) ) |
| 31 | 30 | rneqd | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) = ran ( 𝐻 ↾ ( 𝑓 supp 0 ) ) ) |
| 32 | df-ima | ⊢ ( 𝐻 “ ( 𝑓 supp 0 ) ) = ran ( 𝐻 ↾ ( 𝑓 supp 0 ) ) | |
| 33 | 31 32 | eqtr4di | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) = ( 𝐻 “ ( 𝑓 supp 0 ) ) ) |
| 34 | 33 | supeq1d | ⊢ ( ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑓 ∈ 𝐵 ) → sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) = sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) |
| 35 | 34 | mpteq2dva | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑓 ∈ 𝐵 ↦ sup ( ran ( ℎ ∈ ( 𝑓 supp 0 ) ↦ ( ℂfld Σg ℎ ) ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) ) |
| 36 | 22 35 | eqtrd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mDeg 𝑅 ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) ) |
| 37 | reldmmdeg | ⊢ Rel dom mDeg | |
| 38 | 37 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mDeg 𝑅 ) = ∅ ) |
| 39 | mpt0 | ⊢ ( 𝑓 ∈ ∅ ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) = ∅ | |
| 40 | 38 39 | eqtr4di | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mDeg 𝑅 ) = ( 𝑓 ∈ ∅ ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) ) |
| 41 | reldmmpl | ⊢ Rel dom mPoly | |
| 42 | 41 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
| 43 | 2 42 | eqtrid | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑃 = ∅ ) |
| 44 | 43 | fveq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ 𝑃 ) = ( Base ‘ ∅ ) ) |
| 45 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 46 | 44 3 45 | 3eqtr4g | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 47 | 46 | mpteq1d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) = ( 𝑓 ∈ ∅ ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) ) |
| 48 | 40 47 | eqtr4d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mDeg 𝑅 ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) ) |
| 49 | 36 48 | pm2.61i | ⊢ ( 𝐼 mDeg 𝑅 ) = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) |
| 50 | 1 49 | eqtri | ⊢ 𝐷 = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) |