This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | map0.1 | ⊢ 𝐴 ∈ V | |
| map0.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | mapsn | ⊢ ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0.1 | ⊢ 𝐴 ∈ V | |
| 2 | map0.2 | ⊢ 𝐵 ∈ V | |
| 3 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
| 4 | 2 | a1i | ⊢ ( 𝐴 ∈ V → 𝐵 ∈ V ) |
| 5 | 3 4 | mapsnd | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } } ) |
| 6 | 1 5 | ax-mp | ⊢ ( 𝐴 ↑m { 𝐵 } ) = { 𝑓 ∣ ∃ 𝑦 ∈ 𝐴 𝑓 = { 〈 𝐵 , 𝑦 〉 } } |