This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power of a positive number less than 1 decreases as its exponent increases. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpexpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| rpexpcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| ltexp2rd.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ltexp2rd.4 | ⊢ ( 𝜑 → 𝐴 < 1 ) | ||
| Assertion | ltexp2rd | ⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexpcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | rpexpcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | ltexp2rd.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ltexp2rd.4 | ⊢ ( 𝜑 → 𝐴 < 1 ) | |
| 5 | ltexp2r | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) | |
| 6 | 1 3 2 4 5 | syl31anc | ⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |