This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt2addmuld.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| lt2addmuld.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lt2addmuld.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lt2addmuld.altc | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | ||
| lt2addmuld.bltc | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | ||
| Assertion | lt2addmuld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 2 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2addmuld.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | lt2addmuld.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lt2addmuld.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lt2addmuld.altc | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | |
| 5 | lt2addmuld.bltc | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | |
| 6 | 1 2 3 3 4 5 | lt2addd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐶 ) ) |
| 7 | 3 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 8 | 7 | 2timesd | ⊢ ( 𝜑 → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 9 | 6 8 | breqtrrd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 2 · 𝐶 ) ) |