This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lmodmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodmcl.t | ⊢ · = ( .r ‘ 𝐹 ) | ||
| Assertion | lmodmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lmodmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lmodmcl.t | ⊢ · = ( .r ‘ 𝐹 ) | |
| 4 | 1 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 5 | 2 3 | ringcl | ⊢ ( ( 𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |