This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | llyss | ⊢ ( 𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 → ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) | |
| 2 | 1 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 3 | 2 | reximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 4 | 3 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 5 | 4 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) |
| 6 | 5 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) → ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) ) |
| 7 | islly | ⊢ ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ) ) | |
| 8 | islly | ⊢ ( 𝑗 ∈ Locally 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐵 ) ) ) | |
| 9 | 6 7 8 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Locally 𝐵 ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵 ) |