This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
| lt2.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | lesub0i | ⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt2.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | lesub0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) |