This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| lt.2 | ⊢ 𝐵 ∈ ℝ | ||
| lt.3 | ⊢ 𝐶 ∈ ℝ | ||
| Assertion | le2tri3i | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | ⊢ 𝐶 ∈ ℝ | |
| 4 | 2 3 1 | letri | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 5 | 1 2 | letri3i | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) |
| 6 | 5 | biimpri | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 = 𝐵 ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) → 𝐴 = 𝐵 ) |
| 8 | 7 | 3impb | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐴 = 𝐵 ) |
| 9 | 3 1 2 | letri | ⊢ ( ( 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 10 | 2 3 | letri3i | ⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 11 | 10 | biimpri | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐵 = 𝐶 ) |
| 12 | 9 11 | sylan2 | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ ( 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 = 𝐶 ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 = 𝐶 ) |
| 14 | 13 | 3comr | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐵 = 𝐶 ) |
| 15 | 1 2 3 | letri | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
| 16 | 1 3 | letri3i | ⊢ ( 𝐴 = 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) |
| 17 | 16 | biimpri | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐴 = 𝐶 ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐶 = 𝐴 ) |
| 19 | 15 18 | stoic3 | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐶 = 𝐴 ) |
| 20 | 8 14 19 | 3jca | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) ) |
| 21 | 1 | eqlei | ⊢ ( 𝐴 = 𝐵 → 𝐴 ≤ 𝐵 ) |
| 22 | 2 | eqlei | ⊢ ( 𝐵 = 𝐶 → 𝐵 ≤ 𝐶 ) |
| 23 | 3 | eqlei | ⊢ ( 𝐶 = 𝐴 → 𝐶 ≤ 𝐴 ) |
| 24 | 21 22 23 | 3anim123i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) |
| 25 | 20 24 | impbii | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) ) |